Dynatomic polynomials associated with distinguished polynomials.

SYLLA Djeidi

Université des Sciences, des Techniques et des Technologies de Bamako Faculté des Sciences et Techniques

VIII-th International Conference on p-adic Mathematical Physics and its applications

Outline

(1) Definitions and reminders.
(2) The polynomials h written in the form $h(z)=z+g(z)$

- The polynomials $g_{\nu}(z)$.
- Examples in a complete valued field with residue characteristic $p \neq 0$.
- The p^{ℓ}-dynatomic polynomial for $h(z)=a_{0}+z+z^{q}, 0 \neq a_{0} \in p \mathbb{Z}_{p}$.
(3) The p-adic 3-periodic points of $h(z)=a_{0}+z+z^{q}, v_{p}\left(a_{0}\right) \geq 1$
- The case $p=2$ and $q=2$
- The case $p=3$ and $q=3$
- The case $p=5$ and $q=5$
- The case $p=7$ and $q=7$

Definitions and reminders

Definitions and reminders

Let K be a field $h \in K[z]$ be unitary polynomial of degree n. By analogy with the definition of cyclotomic polynomials, for any integer $\nu \geq 1$, one sets $\Phi_{\nu, h}(z)=\prod\left(h^{\circ d}(z)-z\right)^{\mu}\left(\frac{\nu}{d}\right)$, where μ is the arithmetical Möbius function, notice that $\Phi_{1, h}(z)=h(z)-z$. At first glance $\Phi_{\nu, h}(z)$ is a rational fraction. But in fact, one can prove that $\Phi_{\nu, h}(z)$ is a polynomial with degree $\operatorname{deg}\left(\Phi_{\nu, h}\right)=\sum_{d \mid \nu} \mu\left(\frac{\nu}{d}\right) n^{d}$.

Définition

Let ν be a positive integer and h be a polynomial with coefficients in K. The rational fraction $\Phi_{\nu, h}(z) \in K(z)$ is a polynomial said to be dynatomic polynomial associated with polynomial h.
The degree of $\Phi_{\nu, h}$ is $\operatorname{deg}\left(\Phi_{\nu, h}\right)=\sum_{d \mid \nu} \mu\left(\frac{\nu}{d}\right)(\operatorname{deg} h)^{d}$.

Definitions and reminders

Définition

An element α of the algebraic closure \tilde{K} of K is a periodic point of h, if there exists an integer $\nu \geq 1$ such that $h^{\circ \nu}(\alpha)=\alpha$. Hence α is said to be a periodic point of order ν or a ν-periodic point.
Furthermore α is said to be a periodic primitive point of ν or primitive ν-periodic point if it is ν-periodic and for any integer $1 \leq j<\nu$, one has $h^{\circ j}(\alpha) \neq \alpha$.

Lemma

If the polynomial h admits a primitive ν-periodic point α, then $\Phi_{\nu, h}(\alpha)=0$.
Conversely, if one supposes that the ν-dynatomic polynomial $\Phi_{\nu, h}$ is separable, i.e. its roots are simple, then the primitive ν-periodic points of h are the roots of $\Phi_{\nu, h}$.

The polynomials h written in the form $h(z)=z+g(z)$

Outline

(1) Definitions and reminders.
(2) The polynomials h written in the form $h(z)=z+g(z)$

- The polynomials $g_{\nu}(z)$.
- Examples in a complete valued field with residue characteristic $p \neq 0$.
- The p^{ℓ}-dynatomic polynomial for $h(z)=a_{0}+z+z^{q}, 0 \neq a_{0} \in p \mathbb{Z}_{p}$.
(3) The p-adic 3-periodic points of $h(z)=a_{0}+z+z^{q}, v_{p}\left(a_{0}\right) \geq 1$
- The case $p=2$ and $q=2$
- The case $p=3$ and $q=3$
- The case $p=5$ and $q=5$
- The case $p=7$ and $q=7$

The polynomials h written in the form $h(z)=z+g(z)$.

I. The polynomials $g_{\nu}(z)$.

- Let us consider the polynomial h written in the form $h(z)=z+g(z), \operatorname{deg}(h) \geq 1$.
It follows that if $h(z) \neq z$, one has $\operatorname{deg}(h)=\operatorname{deg}(g)$.
- For any positive integer ν, we shall put $h^{\circ \nu}=z+g_{\nu}(z)$, with $g_{0}(z)=0$ and $g_{1}(z)=g(z)$. One has: $g_{\nu}(z)=h^{\circ \nu}(z)-z=\prod_{d \mid \nu} \Phi_{d, h}(z)$ and $\Phi_{\nu, h}(z)=\prod_{d \mid \nu} g_{d}(z)^{\mu\left(\frac{\nu}{d}\right)}$.

Outline

(1) Definitions and reminders.
(2) The polynomials h written in the form $h(z)=z+g(z)$

- The polynomials $g_{\nu}(z)$.
- Examples in a complete valued field with residue characteristic $p \neq 0$.
- The p^{ℓ}-dynatomic polynomial for $h(z)=a_{0}+z+z^{q}, 0 \neq a_{0} \in p \mathbb{Z}_{p}$.
(3) The p-adic 3-periodic points of $h(z)=a_{0}+z+z^{q}, v_{p}\left(a_{0}\right) \geq 1$
- The case $p=2$ and $q=2$
- The case $p=3$ and $q=3$
- The case $p=5$ and $q=5$
- The case $p=7$ and $q=7$

The polynomials h written in the form $h(z)=z+g(z)$.

II. Examples in a complete valued field with residue characteristic $p \neq 0$

- Let us remind that if A is a commutative local ring with maximal ideal \mathcal{M}, a unitary polynomial $g(z)=a_{0}+a_{1} z+\cdots+a_{s-1} z^{s-1}+z^{s} \in A[z]$ is distinguished if a_{j} belongs to \mathcal{M}, for $0 \leq j \leq s-1$.
- Let us notice that if A is a discrete valuation ring, any Eisenstein polynomial is distinguished.

The polynomials h written in the form $h(z)=z+g(z)$.

Let L be a complete ultrametric valued field, we denote by Λ_{L} its ring of valuation, by \mathcal{M}_{L} the maximal ideal of Λ_{L} and $\bar{L}=\Lambda_{L} / \mathcal{M}_{L}$, the residue field of L. In the sequel we assume that the residue characteristic of L is a prime number p.

Theorem

Let L be a complete ultrametric valued field of residue characteristic $p \neq 0, q$ a power of p. Set $h(z)=z+g(z)$.
Reducing the polynomial $g_{\nu}(z)=h^{\circ \nu}(z)-z, \nu \geq 1$, modulo the ideal
$\mathcal{M}_{L}[z]$ of $\Lambda_{L}[z]$, one obtains in $\bar{L}[z]$ the formula: $\bar{g}_{\nu}(z)=\sum_{j=0}^{\nu}\binom{\nu}{j} z^{q^{j}}$

The polynomials h written in the form $h(z)=z+g(z)$.

Corollary

Let L be a complete ultrametric valued field of residue characteristic $p \neq 0$.
Let $g(z)=a_{0}+a_{1} z+\cdots+a_{q-1} z^{q-1}+z^{q}$ be a distinguished polynomial over the valuation ring Λ_{L} of L with degree q a power of p. Then:

- For any integer $\nu \geq 1$, the polynomial $\bar{g}_{\nu}(z) \in \bar{L}[z]$ is an additive polynomial.
- Therefore $\bar{g}(0)=0$, i.e. $\left|g_{\nu}(0)\right|<1$.

Corollary

Let L be a complete ultrametric valued field of residue characteristic $p \neq 0$. Let $g(z)=a_{0}+a_{1} z+\cdots+a_{q-1} z^{q-1}+z^{q}$ be a distinguished polynomial over the valuation ring Λ_{L} of L with degree q a power of p. Then for any integer $\nu \geq 1$, the derivative of the polynomial $h^{\circ \nu}(z)=z+g_{\nu}(z)$ is such that $\left(h^{\circ \nu}\right)^{\prime}(z) \equiv 1\left(\bmod . \mathcal{M}_{L}[z]\right)$, where \mathcal{M}_{L} is the maximal ideal of Λ_{L}.

The polynomials h written in the form $h(z)=z+g(z)$.

Lemma

Let L be a complete ultrametric value field with valuation ring Λ. Let $f(z)=c_{0}+c_{1} z+\cdots+c_{m-1} z^{m-1}+c_{m} z^{m} \in \Lambda_{L}[z]$, such that $\left|c_{m}\right|=1$.
If α is a root of f in an algebraic closure of L, then $|\alpha| \leq 1$.

Proposition

Let L be a complete ultrametric valued field of residue characteristic $p \neq 0$.
Let $g(z)=a_{0}+a_{1} z+\cdots+a_{q-1} z^{q-1}+z^{q} \in \Lambda_{L}[z]$ be a distinguished polynomial of degree q a power of p. Put $h(z)=z+g(z)$. Then:

- For any integer $\nu \geq 1$, the ν-periodic points of h are indifferent points.
- Let α be a periodic point of order ν in an algebraic closure of L. One has $|\alpha| \leq 1$. Furthermore in the field extension $K=L[\alpha]$ of L, the closed disc $D_{K}^{+}(\alpha, 1)$ is a Siegel disc of α in K.

Outline

(1) Definitions and reminders.
(2) The polynomials h written in the form $h(z)=z+g(z)$

- The polynomials $g_{\nu}(z)$.
- Examples in a complete valued field with residue characteristic $p \neq 0$.
- The p^{ℓ}-dynatomic polynomial for $h(z)=a_{0}+z+z^{q}, 0 \neq a_{0} \in p \mathbb{Z}_{p}$.
(3) The p-adic 3-periodic points of $h(z)=a_{0}+z+z^{q}, v_{p}\left(a_{0}\right) \geq 1$
- The case $p=2$ and $q=2$
- The case $p=3$ and $q=3$
- The case $p=5$ and $q=5$
- The case $p=7$ and $q=7$

The polynomials h written in the form $h(z)=z+g(z)$.

III. The p^{ℓ}-dynatomic polynomial for $h(z)=a_{0}+z+z^{q}$,
$0 \neq a_{0} \in p \mathbb{Z}_{p}$.

Let $q=p^{s}$ be a power of the prime p. The polynomial $g(z)=z^{q}$ is a particular distinguished polynomial with coefficients in the ring of p-adic integer \mathbb{Z}_{p}.

Proposition (Moton and Patel, 1994)

Let $q=p^{5}$ be a power of the prime number p.
Assume that $g(z)=z^{q}$.
Then for any power p^{ℓ} of p the dynatomic polynomial $\Phi_{p^{\ell}, z+z^{q}}$ is an
Eisenstein polynomial with coefficients in the ring of p-adic integers \mathbb{Z}_{p} and degree $q^{p^{\ell}}-q^{p^{\ell-1}}$.

The polynomials h written in the form $h(z)=z+g(z)$.

Corollary

Let $h(z)=z+z^{q}$ where $q>1$ is a power of the prime number p.

- For any power $p^{\ell}, \ell \geq 1$ of p; the primitive p^{ℓ}-periodic points α of $h(z)=z+z^{q}$ are the roots of the dynatomic polynomial $\Phi_{p^{\ell}, z+z^{q}}$.
- Each algebraic extension $K=\mathbb{Q}_{p}[\alpha]$ is totally ramified of degree $q^{p^{\ell}}-q^{p^{\ell-1}}$ and contains the p^{ℓ}-cycle $\left\{\alpha, h(\alpha), \cdots, h^{p^{\ell-1}}(\alpha)\right\}$.

We shall give below a kind of generalization of the above results obtained for the polynomial $h(z)=z+z^{q}$.

The polynomials h written in the form $h(z)=z+g(z)$.

Theorem (Diarra and Sylla, 2020)

Let p be a prime number.
Let q be a power of p such that $q \geq 3$. Consider the distinguished polynpomial of the form $g(z)=a_{0}+z^{q} \in \mathbb{Z}_{p}[z]$, with $a_{0} \neq 0$ and $h(z)=a_{0}+z+z^{q}$.

- For $1 \leq \ell \leq q-2$, the dynatomic polynomial $\Phi_{p^{\ell}, h}(z)$ is an Eisenstein polynomial. The primitive p^{ℓ}-periodic points of h are the roots of $\Phi_{p^{\ell}, h}(z)$.
- If α is a primitive p^{ℓ}-periodic points, then the field extension $K=\mathbb{Q}_{p}[\alpha]$ of \mathbb{Q}_{p} is totally ramified of degree $q^{p^{\ell}}-q^{p^{\ell-1}}$.
- Furthermore, if β is a p^{ℓ}-periodic point of h, then or β is a fixed point of h : hence a root of $g(z)=a_{0}+z^{q}$, or there exists an integer j with $1 \leq j \leq \ell$ such β is a primitive p^{j}-periodic point of h.

The polynomials h written in the form $h(z)=z+g(z)$.

Corollary

With the above notations, if α is a primitive p^{ℓ}-periodic, the totally ramified extension $K=\mathbb{Q}_{p}[\alpha]$ of \mathbb{Q}_{p} contains the p^{ℓ}-cycle $\left\{\alpha, h(\alpha), \cdots, h^{\circ \ell-1}(\alpha)\right\}$. The number of p^{ℓ}-cycles in the Galois field of the polynomial $\Phi_{p^{\ell}, h}(z)$ is equal to $\frac{1}{p^{\ell}}\left(q^{p^{\ell}}-q^{p^{\ell-1}}\right)$.

Remark

The results stated in this subsection remain true if in place of \mathbb{Z}_{p}, one takes $a_{0} \in \mathcal{M}_{L}$, the maximal ideal of Λ_{L} the valuation ring of a finite unramified extension L of \mathbb{Q}_{p}; because one has $\mathcal{M}_{L}=p \Lambda_{L}$.

The p-adic 3-periodic points of $h(z)=a_{0}+z+z^{q}, v_{p}\left(a_{0}\right) \geq 1$

The p-adic 3 -periodic points of $h(z)=a_{0}+z+z^{q}$, $v_{p}\left(a_{0}\right) \geq 1$.

Let q be a power of p. Consider the distinguished polynomial of the form $g(z)=a_{0}+z^{q} \in \Lambda_{L}[z]$, with coefficients in the valuation ring Λ_{L} of a complete ultrametric valued field L residue characteristic $p, a_{0} \neq 0$ and $h(z)=a_{0}+z+z^{q}$.
If ν is prime number the ν-dynatomic polynomial associate to $h(z)$ is give by $\Phi_{\nu, h}(z)=\frac{h^{\circ \nu}(z)-z}{h(z)-z}=\frac{g_{\nu}(z)}{g(z)}$. Therefore
$\bar{\Phi}_{\nu, h}(z)=\sum_{j=1}^{\nu}\binom{\nu}{j} z^{q^{j}-q}=\left(\sum_{j=1}^{\nu}\binom{\nu}{j} z^{q^{j-1}-1}\right)^{q}$. In particular, for
$\nu=3$, one has $\bar{\Phi}_{3, h}(z)=\left(3+3 z^{q-1}+z^{q^{2}-1}\right)^{q}$.

Corollary

Let us notice that if $p \neq 3$, then any root α of $\Phi_{3, h}$ is of absolute value $|\alpha|=1$.

The p-adic 3 -periodic points of $h(z)=a_{0}+z+z^{q}$, $v_{p}\left(a_{0}\right) \geq 1$.

Proposition

Let L be a complete ultrametric valued field of residue characteristic $p \neq 0$ and $g(z)=a_{0}+z^{q}$ be a binomial that is a distinguished polynomial in the ring of valuation Λ_{L} of L, with q a power of p. Then the set of the primitive 3 -periodic points of $h(z)=a_{0}+z+z^{q}$ is equal to the set of roots of the 3-dynatomic polynomial $\Phi_{3, h}$.

A consequence is that the polynomial $\Phi_{3, h}$ is separable.

Corollary

The number of 3 -cycles of $h(z)=a_{0}+z+z^{q}$ is equal to
$\frac{1}{3} \operatorname{deg}\left(\Phi_{3, h}\right)=\frac{1}{3}\left(q^{3}-q\right)$.

Outline

(1) Definitions and reminders.
(2) The polynomials h written in the form $h(z)=z+g(z)$

- The polynomials $g_{\nu}(z)$.
- Examples in a complete valued field with residue characteristic $p \neq 0$.
- The p^{ℓ}-dynatomic polynomial for $h(z)=a_{0}+z+z^{q}, 0 \neq a_{0} \in p \mathbb{Z}_{p}$.
(3) The p-adic 3-periodic points of $h(z)=a_{0}+z+z^{q}, v_{p}\left(a_{0}\right) \geq 1$
- The case $p=2$ and $q=2$
- The case $p=3$ and $q=3$
- The case $p=5$ and $q=5$
- The case $p=7$ and $q=7$

The p-adic 3 -periodic points of $h(z)=a_{0}+z+z^{q}$, $v_{p}\left(a_{0}\right) \geq 1$.
I. The case $p=2$ and $q=2$.

We take here $L=\mathbb{Q}_{2}, q=2$. Then $g(z)=a_{0}+z^{2}$, with $a_{0} \in 2 \mathbb{Z}_{2}$ and $h(z)=z+g(z)=a_{0}+z+z^{2}$.
Reducing modulo $2 \mathbb{Z}_{2}[z]$, one obtains directly the formula
$\bar{\Phi}_{3, h}(z)=z^{6}+z^{2}+1=\left(z^{3}+z+1\right)^{2} \in \mathbb{F}_{2}[z]$.

Lemma

Assume that a_{0} belongs to $4 \mathbb{Z}_{2}$.
Then the 3-dynatomic polynomial $\Phi_{3, h}$ of the polynomial $h(z)=a_{0}+z+z^{2}$ is irreducible.

Remark

Assume that $a_{0}=2 b_{0}$, with $\left|b_{0}\right|=1$.
Unfortunately, we cannot apply Schönemann criterium here to $\Phi_{3, h}$.

The p-adic 3 -periodic points of $h(z)=a_{0}+z+z^{q}$, $v_{p}\left(a_{0}\right) \geq 1$.

Theorem (Diarra and Sylla 2020)

Assume that a_{0} belongs to $4 \mathbb{Z}_{2}$.
Let $h(z)=a_{0}+z+z^{2}$ and β be a root of the irreducible polynomial $\Phi_{3, h}$.
Put $K=\mathbb{Q}_{2}[\beta]$. Let $\omega=\lim _{n \rightarrow+\infty} \beta^{8^{n}} \in K$ and $E=\mathbb{Q}_{2}[\omega]$. Then

- E is the maximal unramified extension of \mathbb{Q}_{2} contained in K.
- The algebraic extension $K \mid E$ is totally ramified of degree 2 with an uniformizer $\pi=\beta^{3}+\beta+1$.
Moreover $K \mid \mathbb{Q}_{2}$ is a Galois extension, its Galois group is isomorphic to $\mathbb{Z} / 6 \mathbb{Z}$.
- The number of the 3 -cycles of the polynomial $h(z)=a_{0}+z+z^{2}$ is 2.

If γ is the conjugate of β in the quadratic extension $K \mid E$, then the 3 -cycles of h are $\left(\beta, h(\beta), h^{\circ 2}(\beta)\right)$ and $\left(\gamma, h(\gamma), h^{\circ 2}(\gamma)\right)$.

Outline

(1) Definitions and reminders.
(2) The polynomials h written in the form $h(z)=z+g(z)$

- The polynomials $g_{\nu}(z)$.
- Examples in a complete valued field with residue characteristic $p \neq 0$.
- The p^{ℓ}-dynatomic polynomial for $h(z)=a_{0}+z+z^{q}, 0 \neq a_{0} \in p \mathbb{Z}_{p}$.
(3) The p-adic 3-periodic points of $h(z)=a_{0}+z+z^{q}, v_{p}\left(a_{0}\right) \geq 1$
- The case $p=2$ and $q=2$
- The case $p=3$ and $q=3$
- The case $p=5$ and $q=5$
- The case $p=7$ and $q=7$

The p-adic 3 -periodic points of $h(z)=a_{0}+z+z^{q}$, $v_{p}\left(a_{0}\right) \geq 1$.
II. The case $p=3$ and $q=3$.

If $p=3$, and $g(z)=a_{0}+z^{3} \in \mathbb{Q}_{3}[z]$ is a distinguished polynomial and $h(z)=a_{0}+z+z^{3}$, one has $\bar{\Phi}_{3, h}(z)=3+3 z^{3^{2}-3}+z^{3^{3}-3}=z^{24}$.

Corollary

If $p=3$ and $g(z)=a_{0}+z^{3} \in \mathbb{Q}_{3}[z]$ is a distinguished polynomial, then for $h(z)=a_{0}+z+z^{3}$, the 3-dynatomic polynomial $\Phi_{3, h}$ is an Eisenstein polynomial.

The p-adic 3 -periodic points of $h(z)=a_{0}+z+z^{q}$, $v_{p}\left(a_{0}\right) \geq 1$.

Proposition (Diarra and Sylla, 2020)

Let \mathbb{K}_{3} be the subfield of the 3 -adic complex number field \mathbb{C}_{3} generated by the roots of the 3 -dynatomic polynomial $\Phi_{3, a_{0}+z+z^{3}}(z),\left|a_{0}\right|<1$. Then

- The number of 3 -orbits of h is equal $\frac{24}{3}=8$.
- For any primitive 3-periodic point of $h(z)=a_{0}+z+z^{3}$ the orbit $\left\{\beta, h(\beta), h^{\circ 2}(\beta)\right\}$ is contained in $\mathbb{Q}_{3}[\beta]$. There are at most 8 distinct subfields of \mathbb{K}_{3} defined by the roots of $\Phi_{3, a_{0}+z+z^{3}}(z)$.

Outline

(1) Definitions and reminders.
(2) The polynomials h written in the form $h(z)=z+g(z)$

- The polynomials $g_{\nu}(z)$.
- Examples in a complete valued field with residue characteristic $p \neq 0$.
- The p^{ℓ}-dynatomic polynomial for $h(z)=a_{0}+z+z^{q}, 0 \neq a_{0} \in p \mathbb{Z}_{p}$.
(3) The p-adic 3-periodic points of $h(z)=a_{0}+z+z^{q}, v_{p}\left(a_{0}\right) \geq 1$
- The case $p=2$ and $q=2$
- The case $p=3$ and $q=3$
- The case $p=5$ and $q=5$
- The case $p=7$ and $q=7$

The p-adic 3 -periodic points of $h(z)=a_{0}+z+z^{q}$, $v_{p}\left(a_{0}\right) \geq 1$.
III. The case $p=5$ and $q=5$.

Let $g(z)=a_{0}+z^{5} \in \mathbb{Z}_{5}[z]$ be a distinguished polynomial and $h(z)=z+g(z)=a_{0}+z+z^{5}$. One has $\bar{\Phi}_{3, h}(z)=\left(3+3 z^{4}+z^{5^{2}-1}\right)^{5}=\left(3+3 z^{4}+z^{24}\right)^{5}$

Proposition

For $a_{0} \in 5 \mathbb{Z}_{5}$, the polynomial $\Phi_{3, a_{0}+z+z^{5}}(z) \in \mathbb{Q}_{5}[z]$ is irreducible.

The p-adic 3 -periodic points of $h(z)=a_{0}+z+z^{q}$, $v_{p}\left(a_{0}\right) \geq 1$.

Theorem (Diarra and Sylla)

Assume that a_{0} belongs to $5 \mathbb{Z}_{5}$.
Let $h(z)=a_{0}+z+z^{5}$ and β be a root of the irreducible polynomial $\Phi_{3, h}$.
Put $K=\mathbb{Q}_{5}[\beta]$. Let $\omega=\lim _{n \rightarrow+\infty} \beta^{5^{24 n}} \in K$ and $E=\mathbb{Q}_{5}[\omega]$. Then

- E is the maximal unramified extension of \mathbb{Q}_{5} contained in K.
- The algebraic extension $K \mid E$ is totally ramified of degree 5 with an uniformizer $\pi=3+3 \beta^{4}+\beta^{24}$.
- The number of 3 -cycles of $h(z)=a_{0}+z+z^{5}$ is equal to 40 .

Outline

(1) Definitions and reminders.
(2) The polynomials h written in the form $h(z)=z+g(z)$

- The polynomials $g_{\nu}(z)$.
- Examples in a complete valued field with residue characteristic $p \neq 0$.
- The p^{ℓ}-dynatomic polynomial for $h(z)=a_{0}+z+z^{q}, 0 \neq a_{0} \in p \mathbb{Z}_{p}$.
(3) The p-adic 3-periodic points of $h(z)=a_{0}+z+z^{q}, v_{p}\left(a_{0}\right) \geq 1$
- The case $p=2$ and $q=2$
- The case $p=3$ and $q=3$
- The case $p=5$ and $q=5$
- The case $p=7$ and $q=7$

The p-adic 3 -periodic points of $h(z)=a_{0}+z+z^{q}$, $v_{p}\left(a_{0}\right) \geq 1$.
IV. The case $p=7$ and $q=7$.

Let $g(z)=a_{0}+z^{7} \in \mathbb{Z}_{7}[z]$ be a distinguished polynomial and $h(z)=z+g(z)=a_{0}+z+z^{7} \in \mathbb{Z}_{7}[z]$. One has $\bar{\Phi}_{3, h}(z)=\left(3+3 z^{6}+z^{48}\right)^{7}$.
$\operatorname{deg}\left(\Phi_{3, h}(z)\right)=7^{3}-7=336$ and $\Phi_{3, h}(z)=\prod_{i=1}^{336}\left(z-\beta_{i}\right) \in \mathbb{C}_{7}[z]$.
We shall put $\Phi_{3, h}(z)=\prod_{j=1}^{8} \Phi_{j}(z)$.

The p-adic 3 -periodic points of $h(z)=a_{0}+z+z^{q}$, $v_{p}\left(a_{0}\right) \geq 1$.

For the polynomials $\Phi_{j}(z), 1 \leq j \leq 6$
Let us consider ψ written in the form $\psi(z)=\prod_{j=1}^{6} \Phi_{j}(z)$, one has
$\bar{\Psi}(z)=\prod_{\ell=1}^{6}(z-\bar{\ell})=\prod_{\eta \in \mathbb{F}_{7}^{*}}(z-\eta)$.
Let \mathcal{Z}_{ψ} be the set of roots of Ψ. Since $\bar{h}(z)$ permutes the roots of $\bar{\Psi}(z)$ if $\beta \in \mathcal{Z}_{\Psi}$, then the 3 -cycle $\left(\beta, h(\beta), h^{\circ 2}(\beta)\right)$ is in \mathcal{Z}_{ψ}.

Proposition

Let β be a root of $\Phi_{j}, 1 \leq j \leq 6$, then:

- $\mathbb{Q}_{7}[\beta]$ is equal to \mathbb{Q}_{7} or is a totally ramified extension of \mathbb{Q}_{7}.
- The number of the 3 -cycles is 14

The p-adic 3 -periodic points of $h(z)=a_{0}+z+z^{q}$, $v_{p}\left(a_{0}\right) \geq 1$.

For the Polynomial $\Phi_{7}(z)$

The polynomial Φ_{7} is such that $\Phi_{7}(z)=w_{7}(z)^{7}=\left(z^{6}-3\right)^{7} \in \mathbb{F}_{7}[z]$.

Proposition

Put $\mathcal{Z}_{7}=\left\{\beta \in \mathbb{C}_{7} / w_{7}(\bar{\beta})=0\right\}$, the set of roots of Φ_{7}. Then if $\beta \in \mathcal{Z}_{7}$, one has $h(\beta) \in \mathcal{Z}_{7}$. Furthermore \mathcal{Z}_{7} is a partition of 14 subsets of 3 -cycles.

The p-adic 3 -periodic points of $h(z)=a_{0}+z+z^{q}$, $v_{p}\left(a_{0}\right) \geq 1$.

For the Polynomial $\Phi_{8}(z)$

The polynomial Φ_{8} is such that
$\bar{\Phi}_{8}(z)=w_{8}(z)^{7}=\left(z^{36}+4 z^{30}+5 z^{18}+2 z^{12}+1\right)^{7}$.
Proposition
Let $\mathcal{Z}_{8}=\left\{\beta \in \mathbb{C}_{7} / w_{8}(\bar{\beta})=0\right\}$, the set of roots of $\Phi_{8}(z)$.
Let us consider \mathcal{Z}_{ϕ}, the set of the 3-primitive periodic points, that is the set of roots of 3-dynatomic polynomial $\Phi_{3, h}$.
Then $\mathcal{Z}_{8}=\mathcal{Z}_{\phi} \backslash\left(\mathcal{Z}_{\psi} \cup \mathcal{Z}_{7}\right)$.
Since \mathcal{Z}_{ψ} and \mathcal{Z}_{7} are invariant by h then \mathcal{Z}_{8} is also invariant by h. Hence for any $\beta \in \mathcal{Z}_{8}$ the 3-cycle $\left(\beta, h(\beta), h^{2}(\beta)\right)$ is in \mathcal{Z}_{8}. Furthermore \mathcal{Z}_{8} is a partition of $84=\frac{252}{3}$ subsets of 3 -cycles.

The case $p=2$ and $q=2$
The case $p=3$ and $q=3$
The case $p=5$ and $q=5$
The case $p=7$ and $q=7$

Thanks

