Dynatomic polynomials associated with distinguished polynomials.

SYLLA Djeidi

Université des Sciences, des Techniques et des Technologies de Bamako Faculté des Sciences et Techniques

VIII-th International Conference on *p*-adic Mathematical Physics and its applications

Outline

- 2 The polynomials h written in the form h(z) = z + g(z)
 - The polynomials $g_{\nu}(z)$.
 - Examples in a complete valued field with residue characteristic $p \neq 0$.
 - The p^{ℓ} -dynatomic polynomial for $h(z) = a_0 + z + z^q$, $0 \neq a_0 \in p\mathbb{Z}_p$.

3 The *p*-adic 3-periodic points of $h(z) = a_0 + z + z^q$, $v_p(a_0) \ge 1$

- The case p = 2 and q = 2
- The case p = 3 and q = 3
- The case p = 5 and q = 5
- The case p = 7 and q = 7

Definitions and reminders.

The polynomials h written in the form h(z)=z+g(z)The p-adic 3-periodic points of $h(z)=a_0+z+z^q, \, v_p(a_0)\,\geq\,1$

Definitions and reminders

A D b 4 A b

医下子 化

Definitions and reminders. mials h written in the form h(z) = z + g(z)

The polynomials *h* written in the form h(z) = z + g(z)The *p*-adic 3-periodic points of $h(z) = a_0 + z + z^q$, $v_p(a_0) \ge 1$

Definitions and reminders

Let K be a field $h \in K[z]$ be unitary polynomial of degree n. By analogy with the definition of cyclotomic polynomials, for any integer

$$u \geq 1$$
, one sets $\Phi_{
u,h}(z) = \prod_{d|
u} \left(h^{\circ d}(z) - z\right)^{\mu \left(\frac{d}{d}\right)}$, where μ is the

arithmetical Möbius function, notice that $\Phi_{1,h}(z) = h(z) - z$. At first glance $\Phi_{\nu,h}(z)$ is a rational fraction. But in fact, one can prove that $\Phi_{\nu,h}(z)$ is a polynomial with degree $\deg(\Phi_{\nu,h}) = \sum_{d|\nu} \mu\left(\frac{\nu}{d}\right) n^d$.

Définition

Let ν be a positive integer and h be a polynomial with coefficients in K. The rational fraction $\Phi_{\nu,h}(z) \in K(z)$ is a polynomial said to be dynatomic polynomial associated with polynomial h.

The degree of $\Phi_{\nu, h}$ is deg $(\Phi_{\nu, h}) = \sum_{d|\nu} \mu\left(\frac{\nu}{d}\right) (\deg h)^d$.

Definitions and reminders.

The polynomials h written in the form h(z) = z + g(z)The p-adic 3-periodic points of $h(z) = a_0 + z + z^q$, $v_p(a_0) \ge 1$

Definitions and reminders

Définition

An element α of the algebraic closure \tilde{K} of K is a periodic point of h, if there exists an integer $\nu \geq 1$ such that $h^{\circ\nu}(\alpha) = \alpha$. Hence α is said to be a periodic point of order ν or a ν -periodic point. Furthermore α is said to be a periodic primitive point of ν or primitive ν -periodic point if it is ν -periodic and for any integer $1 \leq j < \nu$, one has $h^{\circ j}(\alpha) \neq \alpha$.

Lemma

If the polynomial h admits a primitive ν -periodic point α , then $\Phi_{\nu,h}(\alpha) = 0$. Conversely, if one supposes that the ν -dynatomic polynomial $\Phi_{\nu,h}$ is separable, i.e. its roots are simple, then the primitive ν -periodic points of h are the roots of $\Phi_{\nu,h}$. Definitions and reminders. The polynomials h written in the form h(z) = z + g(z)The p-adic 3-periodic points of $h(z) = a_0 + z + z^q$, $v_p(a_0) \ge 1$ The p^2 -dynatomic polynomial for $h(z) = a_0 + z + z^q$, $0 \neq a_0 \in p\mathbb{Z}_p$

The polynomials h written in the form h(z) = z + g(z)

Outline

The polynomials $g_{\nu}(z)$. Examples in a complete valued field with residue characteristic $p \neq 0$ The p^{ℓ} -dynatomic polynomial for $h(z) = a_0 + z + z^q$, $0 \neq a_0 \in p\mathbb{Z}_p$.

Definitions and reminders.

- 2 The polynomials *h* written in the form h(z) = z + g(z)
 - The polynomials $g_{\nu}(z)$.
 - Examples in a complete valued field with residue characteristic $p \neq 0$.
 - The p^{ℓ} -dynatomic polynomial for $h(z) = a_0 + z + z^q$, $0 \neq a_0 \in p\mathbb{Z}_p$.

The p-adic 3-periodic points of h(z) = a₀ + z + z^q, v_p(a₀) ≥ 1
The case p = 2 and q = 2
The case p = 3 and q = 3
The case p = 5 and q = 5
The case p = 7 and q = 7

The polynomials $g_{\nu}(z)$. Examples in a complete valued field with residue characteristic $p \neq 0$ The p^{ℓ} -dynatomic polynomial for $h(z) = a_0 + z + z^q$, $0 \neq a_0 \in p$

The polynomials h written in the form h(z) = z + g(z).

I. The polynomials $g_{\nu}(z)$.

• Let us consider the polynomial h written in the form h(z) = z + g(z), $\deg(h) \ge 1$. It follows that if $h(z) \ne z$, one has $\deg(h) = \deg(g)$.

• For any positive integer ν , we shall put $h^{\circ\nu} = z + g_{\nu}(z)$, with $g_0(z) = 0$ and $g_1(z) = g(z)$. One has: $g_{\nu}(z) = h^{\circ\nu}(z) - z = \prod_{d|\nu} \Phi_{d, h}(z)$ and $\Phi_{\nu, h}(z) = \prod_{d|\nu} g_d(z)^{\mu(\frac{\nu}{d})}$.

The polynomials $g_{\mathcal{V}}(z)$. Examples in a complete valued field with residue characteristic $p \neq 0$ The p^{ℓ} -dynatomic polynomial for $h(z) = a_0 + z + z^q$, $0 \neq a_0 \in p\mathbb{Z}_p$

Outline

Definitions and reminders.

- The polynomials h written in the form h(z) = z + g(z)
 The polynomials g_u(z).
 - Examples in a complete valued field with residue characteristic $p \neq 0$.
 - The p^{ℓ} -dynatomic polynomial for $h(z) = a_0 + z + z^q$, $0 \neq a_0 \in p\mathbb{Z}_p$.

The p-adic 3-periodic points of h(z) = a₀ + z + z^q, v_p(a₀) ≥ 1
The case p = 2 and q = 2
The case p = 3 and q = 3
The case p = 5 and q = 5
The case p = 7 and q = 7

The polynomials $g_{\mathcal{D}}(z)$. Examples in a complete valued field with residue characteristic $\rho \neq 0$ The ρ^{L} -dynatomic polynomial for $h(z) = a_{0} + z + z^{q}$, $0 \neq a_{0} \in \rho\mathbb{Z}_{p}$.

The polynomials h written in the form h(z) = z + g(z).

II. Examples in a complete valued field with residue characteristic $p \neq 0$

- Let us remind that if A is a commutative local ring with maximal ideal \mathcal{M} , a unitary polynomial $g(z) = a_0 + a_1 z + \cdots + a_{s-1} z^{s-1} + z^s \in A[z]$ is distinguished if a_j belongs to \mathcal{M} , for $0 \le j \le s 1$.
- Let us notice that if A is a discrete valuation ring, any Eisenstein polynomial is distinguished.

The polynomials $g_{\nu}(z)$. Examples in a complete valued field with residue characteristic $\rho \neq 0$ The ρ^{L} -dynatomic polynomial for $h(z) = a_0 + z + z^q$, $0 \neq a_0 \in \rho\mathbb{Z}_p$.

The polynomials h written in the form h(z) = z + g(z).

Let *L* be a complete ultrametric valued field, we denote by Λ_L its ring of valuation, by \mathcal{M}_L the maximal ideal of Λ_L and $\overline{L} = \Lambda_L / \mathcal{M}_L$, the residue field of *L*. In the sequel we assume that the residue characteristic of *L* is a prime number *p*.

Theorem

Let *L* be a complete ultrametric valued field of residue characteristic $p \neq 0$, *q* a power of *p*. Set h(z) = z + g(z). Reducing the polynomial $g_{\nu}(z) = h^{\circ\nu}(z) - z$, $\nu \geq 1$, modulo the ideal $\mathcal{M}_{L}[z]$ of $\Lambda_{L}[z]$, one obtains in $\overline{L}[z]$ the formula: $\overline{g}_{\nu}(z) = \sum_{j=0}^{\nu} {\nu \choose j} z^{q^{j}}$

The polynomials $g_{\nu}(z)$. Examples in a complete valued field with residue characteristic $\rho \neq 0$ The ρ^{ℓ} -dynatomic polynomial for $h(z) = a_0 + z + z^q$, $0 \neq a_0 \in \rho\mathbb{Z}_p$.

The polynomials h written in the form h(z) = z + g(z).

Corollary

Let L be a complete ultrametric valued field of residue characteristic $p \neq 0$.

Let $g(z) = a_0 + a_1 z + \cdots + a_{q-1} z^{q-1} + z^q$ be a distinguished polynomial over the valuation ring Λ_L of L with degree q a power of p. Then:

- For any integer $\nu \ge 1$, the polynomial $\overline{g}_{\nu}(z) \in \overline{L}[z]$ is an additive polynomial.
- Therefore $\overline{g}(0) = 0$, i.e. $|g_{\nu}(0)| < 1$.

Corollary

Let *L* be a complete ultrametric valued field of residue characteristic $p \neq 0$. Let $g(z) = a_0 + a_1 z + \cdots + a_{q-1} z^{q-1} + z^q$ be a distinguished polynomial over the valuation ring Λ_L of *L* with degree *q* a power of *p*. Then for any integer $\nu \geq 1$, the derivative of the polynomial $h^{\circ\nu}(z) = z + g_{\nu}(z)$ is such that $(h^{\circ\nu})'(z) \equiv 1 \pmod{\mathcal{M}_L[z]}$, where \mathcal{M}_L is the maximal ideal of Λ_L .

The polynomials $g_{\mu}(z)$. Examples in a complete valued field with residue characteristic $\rho \neq 0$ The ρ^{ℓ} -dynatomic polynomial for $h(z) = a_0 + z + z^q$, $0 \neq a_0 \in \rho\mathbb{Z}_p$.

The polynomials h written in the form h(z) = z + g(z).

Lemma

Let *L* be a complete ultrametric value field with valuation ring Λ . Let $f(z) = c_0 + c_1 z + \cdots + c_{m-1} z^{m-1} + c_m z^m \in \Lambda_L[z]$, such that $|c_m| = 1$. If α is a root of *f* in an algebraic closure of *L*, then $|\alpha| \leq 1$.

Proposition

Let L be a complete ultrametric valued field of residue characteristic $p \neq 0$.

Let $g(z) = a_0 + a_1z + \cdots + a_{q-1}z^{q-1} + z^q \in \Lambda_L[z]$ be a distinguished polynomial of degree q a power of p. Put h(z) = z + g(z). Then:

- For any integer *ν* ≥ 1, the *ν*-periodic points of *h* are indifferent points.
- Let α be a periodic point of order ν in an algebraic closure of L. One has |α| ≤ 1. Furthermore in the field extension K = L[α] of L, the closed disc D⁺_K(α, 1) is a Siegel disc of α in K.

The polynomials $g_{l\nu}(z)$. Examples in a complete valued field with residue characteristic $p \neq 0$ The p^{ℓ} -dynatomic polynomial for $h(z) = a_0 + z + z^q$, $0 \neq a_0 \in p\mathbb{Z}_p$.

Outline

Definitions and reminders.

- 2 The polynomials h written in the form h(z) = z + g(z)
 - The polynomials $g_{\nu}(z)$.
 - Examples in a complete valued field with residue characteristic $p \neq 0$.
 - The p^{ℓ} -dynatomic polynomial for $h(z) = a_0 + z + z^q$, $0 \neq a_0 \in p\mathbb{Z}_p$.
- 3 The p-adic 3-periodic points of h(z) = a₀ + z + z^q, v_p(a₀) ≥ 1
 The case p = 2 and q = 2
 The case p = 3 and q = 3
 The case p = 5 and q = 5
 The case p = 7 and q = 7

The polynomials $g_{\mathcal{V}}(z)$. Examples in a complete valued field with residue characteristic $\rho \neq 0$ The ρ^{ℓ} -dynatomic polynomial for $h(z) = a_0 + z + z^q$, $0 \neq a_0 \in \rho\mathbb{Z}_p$.

The polynomials h written in the form h(z) = z + g(z).

III. The p^{ℓ} -dynatomic polynomial for $h(z) = a_0 + z + z^q$, $0 \neq a_0 \in p\mathbb{Z}_p$.

Let $q = p^s$ be a power of the prime p, The polynomial $g(z) = z^q$ is a particular distinguished polynomial with coefficients in the ring of p-adic integer \mathbb{Z}_p .

Proposition (Moton and Patel, 1994)

Let $q = p^s$ be a power of the prime number p. Assume that $g(z) = z^q$. Then for any power p^{ℓ} of p the dynatomic polynomial $\Phi_{p^{\ell}, z+z^q}$ is an Eisenstein polynomial with coefficients in the ring of p-adic integers \mathbb{Z}_p and degree $q^{p^{\ell}} - q^{p^{\ell-1}}$.

The polynomials $g_{J'}(z)$. Examples in a complete valued field with residue characteristic $\rho \neq 0$ The ρ^{ℓ} -dynatomic polynomial for $h(z) = a_0 + z + z^q$, $0 \neq a_0 \in \rho \mathbb{Z}_p$.

The polynomials h written in the form h(z) = z + g(z).

Corollary

Let $h(z) = z + z^q$ where q > 1 is a power of the prime number p.

- For any power p^ℓ, ℓ ≥ 1 of p; the primitive p^ℓ-periodic points α of h(z) = z + z^q are the roots of the dynatomic polynomial Φ_{p^ℓ,z+z^q}.
- Each algebraic extension $K = \mathbb{Q}_p[\alpha]$ is totally ramified of degree $q^{p^{\ell}} q^{p^{\ell-1}}$ and contains the p^{ℓ} -cycle $\{\alpha, h(\alpha), \dots, h^{p^{\ell-1}}(\alpha)\}$.

We shall give below a kind of generalization of the above results obtained for the polynomial $h(z) = z + z^q$.

The polynomials $g_{\mathcal{V}}(z)$. Examples in a complete valued field with residue characteristic $\rho \neq 0$ The ρ^{ℓ} -dynatomic polynomial for $h(z) = a_0 + z + z^q$, $0 \neq a_0 \in \rho\mathbb{Z}_p$.

The polynomials h written in the form h(z) = z + g(z).

Theorem (Diarra and Sylla, 2020)

Let p be a prime number.

Let q be a power of p such that $q \ge 3$. Consider the distinguished polynpomial of the form $g(z) = a_0 + z^q \in \mathbb{Z}_p[z]$, with $a_0 \ne 0$ and $h(z) = a_0 + z + z^q$.

- For 1 ≤ ℓ ≤ q − 2, the dynatomic polynomial Φ_{pℓ,h}(z) is an Eisenstein polynomial. The primitive pℓ-periodic points of h are the roots of Φ_{pℓ,h}(z).
- If α is a primitive p^{ℓ} -periodic points, then the field extension $\mathcal{K} = \mathbb{Q}_p[\alpha]$ of \mathbb{Q}_p is totally ramified of degree $q^{p^{\ell}} q^{p^{\ell-1}}$.
- Furthermore, if β is a p^ℓ-periodic point of h, then or β is a fixed point of h: hence a root of g(z) = a₀ + z^q, or there exists an integer j with 1 ≤ j ≤ ℓ such β is a primitive p^j-periodic point of h.

4 E b 4 🗐 b 4 E b 4 E

The polynomials $g_{J'}(z)$. Examples in a complete valued field with residue characteristic $\rho \neq 0$ The ρ^{ℓ} -dynatomic polynomial for $h(z) = a_0 + z + z^q$, $0 \neq a_0 \in \rho \mathbb{Z}_p$.

The polynomials h written in the form h(z) = z + g(z).

Corollary

With the above notations, if α is a primitive p^{ℓ} -periodic, the totally ramified extension $\mathcal{K} = \mathbb{Q}_p[\alpha]$ of \mathbb{Q}_p contains the p^{ℓ} -cycle $\{\alpha, h(\alpha), \cdots, h^{\circ p^{\ell-1}}(\alpha)\}$. The number of p^{ℓ} -cycles in the Galois field of the polynomial $\Phi_{p^{\ell},h}(z)$ is equal to $\frac{1}{p^{\ell}} \left(q^{p^{\ell}} - q^{p^{\ell-1}}\right)$.

Remark

The results stated in this subsection remain true if in place of \mathbb{Z}_p , one takes $a_0 \in \mathcal{M}_L$, the maximal ideal of Λ_L the valuation ring of a finite unramified extension L of \mathbb{Q}_p ; because one has $\mathcal{M}_L = p\Lambda_L$.

D-friting and environment	The case $p = 2$ and $q = 2$
The polynomials h written in the form $h(z) = z + g(z)$	The case $p = 3$ and $q = 3$
The p-adic 3-periodic points of $b(z) = a_0 + z + z^q$ $v_2(a_0) \ge 1$	The case $p = 5$ and $q = 5$
The p due of periodic points of $n(z) = u_0 + z + z^2$, $v_p(u_0) \ge z$	The case $p = 7$ and $q = 7$

Definitions and reminders. The polynomials h written in the form h(z) = z + g(z)The p-adic 3-periodic points of $h(z) = a_0 + z + z^q$, $v_p(a_0) \ge 1$ The case p = 3 and q = 3The case p = 5 and q = 5The case p = 7 and q = 7

The *p*-adic 3-periodic points of $h(z) = a_0 + z + z^q$, $v_p(a_0) \ge 1$.

Let q be a power of p. Consider the distinguished polynomial of the form $g(z) = a_0 + z^q \in \Lambda_L[z]$, with coefficients in the valuation ring Λ_L of a complete ultrametric valued field L residue characteristic p, $a_0 \neq 0$ and $h(z) = a_0 + z + z^q$.

If ν is prime number the ν -dynatomic polynomial associate to h(z) is

give by
$$\Phi_{\nu,h}(z) = \frac{h^{\circ\nu}(z) - z}{h(z) - z} = \frac{g_{\nu}(z)}{g(z)}$$
. Therefore
 $\overline{\Phi}_{\nu,h}(z) = \sum_{j=1}^{\nu} {\binom{\nu}{j}} z^{q^{j}-q} = \left(\sum_{j=1}^{\nu} {\binom{\nu}{j}} z^{q^{j-1}-1}\right)^{q}$. In particular, for
 $\nu = 3$, one has $\overline{\Phi}_{3,h}(z) = (3 + 3z^{q-1} + z^{q^{2}-1})^{q}$.

Corollary

Let us notice that if $p \neq 3$, then any root α of $\Phi_{3,h}$ is of absolute value $|\alpha| = 1$.

Definitions and reminders. The polynomials *h* written in the form h(z) = z + g(z)The *p*-adic 3-periodic points of $h(z) = a_0 + z + z^q$, $v_p(a_0) \ge 1$ The case p = 3 and q = 2The case p = 5 and q = 2The case p = 5 and q = 2The case p = 7 and q = 2

The *p*-adic 3-periodic points of $h(z) = a_0 + z + z^q$, $v_p(a_0) \ge 1$.

Proposition

Let *L* be a complete ultrametric valued field of residue characteristic $p \neq 0$ and $g(z) = a_0 + z^q$ be a binomial that is a distinguished polynomial in the ring of valuation Λ_L of *L*, with *q* a power of *p*. Then the set of the primitive 3-periodic points of $h(z) = a_0 + z + z^q$ is equal to the set of roots of the 3-dynatomic polynomial $\Phi_{3,h}$.

A consequence is that the polynomial $\Phi_{3,h}$ is separable.

Corollary

The number of 3-cycles of
$$h(z) = a_0 + z + z^q$$
 is equal to

$$\frac{1}{3} \text{deg}(\Phi_{3, h}) = \frac{1}{3}(q^3 - q).$$

Definitions and reminders.	The case $p = 2$ and $q = 2$
The polynomials <i>h</i> written in the form $h(z) = z + g(z)$ The <i>p</i> -adic 3-periodic points of $h(z) = a_0 + z + z^q$, $v_p(a_0) \ge 1$	The case $p = 3$ and $q = 3$ The case $p = 5$ and $q = 5$ The case $p = 7$ and $q = 7$

Outline

Definitions and reminders.

- The polynomials h written in the form h(z) = z + g(z)
 - The polynomials $g_{\nu}(z)$.
 - Examples in a complete valued field with residue characteristic $p \neq 0$.
 - The p^{ℓ} -dynatomic polynomial for $h(z) = a_0 + z + z^q$, $0 \neq a_0 \in p\mathbb{Z}_p$.

```
3 The p-adic 3-periodic points of h(z) = a<sub>0</sub> + z + z<sup>q</sup>, v<sub>p</sub>(a<sub>0</sub>) ≥ 1
• The case p = 2 and q = 2
• The case p = 3 and q = 3
• The case p = 5 and q = 5
• The case p = 7 and q = 7
```

	The case $p = 2$ and $q = 2$
The action provide the second state of the form $h(x) = x + x(x)$	The case $p = 3$ and $q = 3$
The polynomials <i>n</i> written in the form $n(2) = 2 + g(2)$	The case $p = 5$ and $q = 5$
The p-adic 3-periodic points of $n(2) = a_0 + 2 + 2^{-1}$, $v_p(a_0) \ge 1$	The case $p = 7$ and $q = 7$

I. The case p = 2 and q = 2.

We take here $L = \mathbb{Q}_2$, q = 2. Then $g(z) = a_0 + z^2$, with $a_0 \in 2\mathbb{Z}_2$ and $h(z) = z + g(z) = a_0 + z + z^2$. Reducing modulo $2\mathbb{Z}_2[z]$, one obtains directly the formula $\overline{\Phi}_{3, h}(z) = z^6 + z^2 + 1 = (z^3 + z + 1)^2 \in \mathbb{F}_2[z]$.

Lemma

Assume that a_0 belongs to $4\mathbb{Z}_2$. Then the 3-dynatomic polynomial $\Phi_{3,h}$ of the polynomial $h(z) = a_0 + z + z^2$ is irreducible.

Remark

Assume that $a_0 = 2b_0$, with $|b_0| = 1$. Unfortunately, we cannot apply Schönemann criterium here to $\Phi_{3,h}$. Definitions and reminders. The polynomials h written in the form h(z) = z + g(z)The p-adic 3-periodic points of $h(z) = a_0 + z + z^q$, $v_p(a_0) \ge 1$ The case p = 3 and q = 3The case p = 5 and q = 5The case p = 7 and q = 7

The *p*-adic 3-periodic points of $h(z) = a_0 + z + z^q$, $v_p(a_0) \ge 1$.

Theorem (Diarra and Sylla 2020)

Assume that a_0 belongs to $4\mathbb{Z}_2$.

Let $h(z) = a_0 + z + z^2$ and β be a root of the irreducible polynomial $\Phi_{3,h}$. Put $K = \mathbb{Q}_2[\beta]$. Let $\omega = \lim_{n \to +\infty} \beta^{8^n} \in K$ and $E = \mathbb{Q}_2[\omega]$. Then

- *E* is the maximal unramified extension of \mathbb{Q}_2 contained in *K*.
- The algebraic extension K|E is totally ramified of degree 2 with an uniformizer π = β³ + β + 1. Moreover K|Q₂ is a Galois extension, its Galois group is isomorphic to Z/6Z.
- The number of the 3-cycles of the polynomial $h(z) = a_0 + z + z^2$ is 2.

If γ is the conjugate of β in the quadratic extension K|E, then the 3-cycles of h are $(\beta, h(\beta), h^{\circ 2}(\beta))$ and $(\gamma, h(\gamma), h^{\circ 2}(\gamma))$.

Definitions and reminders.	The case $p = 2$ and $q = 2$ The case $p = 3$ and $q = 3$
The polynomials <i>h</i> written in the form $h(z) = z + g(z)$ The <i>p</i> -adic 3-periodic points of $h(z) = a_0 + z + z^q$, $v_p(a_0) \ge 1$	

Outline

Definitions and reminders.

- The polynomials h written in the form h(z) = z + g(z)
 - The polynomials $g_{\nu}(z)$.
 - Examples in a complete valued field with residue characteristic $p \neq 0$.
 - The p^{ℓ} -dynatomic polynomial for $h(z) = a_0 + z + z^q$, $0 \neq a_0 \in p\mathbb{Z}_p$.

The p-adic 3-periodic points of h(z) = a₀ + z + z^q, v_p(a₀) ≥ 1
The case p = 2 and q = 2
The case p = 3 and q = 3
The case p = 5 and q = 5
The case p = 7 and q = 7

Definitions and reminders.	The case $p = 2$ and $q = 2$
The polynomials <i>h</i> written in the form $h(z) = z + g(z)$ The <i>p</i> -adic 3-periodic points of $h(z) = a_0 + z + z^q$, $v_p(a_0) \ge 1$	The case $p = 3$ and $q = 3$ The case $p = 5$ and $q = 5$ The case $p = 7$ and $q = 7$

II. The case p = 3 and q = 3.

If p = 3, and $g(z) = a_0 + z^3 \in \mathbb{Q}_3[z]$ is a distinguished polynomial and $h(z) = a_0 + z + z^3$, one has $\overline{\Phi}_{3,h}(z) = 3 + 3z^{3^2-3} + z^{3^3-3} = z^{24}$.

Corollary

If p = 3 and $g(z) = a_0 + z^3 \in \mathbb{Q}_3[z]$ is a distinguished polynomial, then for $h(z) = a_0 + z + z^3$, the 3-dynatomic polynomial $\Phi_{3,h}$ is an Eisenstein polynomial. Definitions and reminders. The polynomials h written in the form h(z) = z + g(z)The p-adic 3-periodic points of $h(z) = a_0 + z + z^q$, $v_p(a_0) \ge 1$ The case p = 7 and q = 3The case p = 7 and q = 7

The *p*-adic 3-periodic points of $h(z) = a_0 + z + z^q$, $v_p(a_0) \ge 1$.

Proposition (Diarra and Sylla, 2020)

Let \mathbb{K}_3 be the subfield of the 3-adic complex number field \mathbb{C}_3 generated by the roots of the 3-dynatomic polynomial $\Phi_{3,a_0+z+z^3}(z)$, $|a_0| < 1$. Then

- The number of 3-orbits of *h* is equal $\frac{24}{3} = 8$.
- For any primitive 3-periodic point of h(z) = a₀ + z + z³ the orbit {β, h(β), h^{o2}(β)} is contained in Q₃[β]. There are at most 8 distinct subfields of K₃ defined by the roots of Φ_{3,a₀+z+z³}(z).

Definitions and reminders. The polynomials h written in the form $h(z) = z + g(z)$ The p-adic 3-periodic points of $h(z) = a_0 + z + z^q$, $v_p(a_0) \ge 1$	The case $p = 2$ and $q = 2$ The case $p = 3$ and $q = 3$ The case $p = 5$ and $q = 5$ The case $p = 7$ and $q = 7$
--	---

Outline

Definitions and reminders.

- The polynomials *h* written in the form h(z) = z + g(z)
 - The polynomials $g_{\nu}(z)$.
 - Examples in a complete valued field with residue characteristic $p \neq 0$.
 - The p^{ℓ} -dynatomic polynomial for $h(z) = a_0 + z + z^q$, $0 \neq a_0 \in p\mathbb{Z}_p$.

3 The *p*-adic 3-periodic points of *h*(*z*) = *a*₀ + *z* + *z^q*, *v_p*(*a*₀) ≥ 1 • The case *p* = 2 and *q* = 2 • The case *p* = 3 and *q* = 3 • The case *p* = 5 and *q* = 5 • The case *p* = 7 and *q* = 7

Definitions and reminders. The polynomials *h* written in the form h(z) = z + g(z)The *p*-adic 3-periodic points of $h(z) = a_0 + z + z^q$, $v_p(a_0) \ge 1$ The case p = 3 and q = 3The case p = 5 and q = 5The case p = 7 and q = 7

The *p*-adic 3-periodic points of $h(z) = a_0 + z + z^q$, $v_p(a_0) \ge 1$.

III. The case p = 5 and q = 5.

Let $g(z) = a_0 + z^5 \in \mathbb{Z}_5[z]$ be a distinguished polynomial and $h(z) = z + g(z) = a_0 + z + z^5$. One has $\overline{\Phi}_{3,h}(z) = (3 + 3z^4 + z^{5^2-1})^5 = (3 + 3z^4 + z^{24})^5$

Proposition

For $a_0 \in 5\mathbb{Z}_5$, the polynomial $\Phi_{3, a_0+z+z^5}(z) \in \mathbb{Q}_5[z]$ is irreducible.

Definitions and reminders. The polynomials h written in the form h(z) = z + g(z)The p-adic 3-periodic points of $h(z) = a_0 + z + z^q$, $v_p(a_0) \ge 1$ The case p = 7 and q = 3The case p = 5 and q = 5The case p = 7 and q = 7

The *p*-adic 3-periodic points of $h(z) = a_0 + z + z^q$, $v_p(a_0) \ge 1$.

Theorem (Diarra and Sylla)

Assume that a_0 belongs to $5\mathbb{Z}_5$. Let $h(z) = a_0 + z + z^5$ and β be a root of the irreducible polynomial $\Phi_{3,h}$. Put $K = \mathbb{Q}_5[\beta]$. Let $\omega = \lim_{n \to +\infty} \beta^{5^{24n}} \in K$ and $E = \mathbb{Q}_5[\omega]$. Then

- *E* is the maximal unramified extension of \mathbb{Q}_5 contained in *K*.
- The algebraic extension K|E is totally ramified of degree 5 with an uniformizer $\pi = 3 + 3\beta^4 + \beta^{24}$.
- The number of 3-cycles of $h(z) = a_0 + z + z^5$ is equal to 40.

Definitions and reminders.	The case $p = 2$ and $q = 2$ The case $p = 3$ and $q = 3$
The polynomials <i>h</i> written in the form $h(z) = z + g(z)$ The <i>p</i> -adic 3-periodic points of $h(z) = a_0 + z + z^q$, $v_p(a_0) \ge 1$	The case $p = 5$ and $q = 5$ The case $p = 5$ and $q = 5$ The case $p = 7$ and $q = 7$

Outline

Definitions and reminders.

- The polynomials h written in the form h(z) = z + g(z)
 - The polynomials $g_{\nu}(z)$.
 - Examples in a complete valued field with residue characteristic $p \neq 0$.
 - The p^{ℓ} -dynatomic polynomial for $h(z) = a_0 + z + z^q$, $0 \neq a_0 \in p\mathbb{Z}_p$.

3 The *p*-adic 3-periodic points of $h(z) = a_0 + z + z^q$, $v_p(a_0) \ge 1$

- The case p = 2 and q = 2
- The case p = 3 and q = 3
- The case p = 5 and q = 5
- The case p = 7 and q = 7

Definitions and reminders	
The polynomials h written in the form $h(z) = z + g(z)$	
The polynomials <i>n</i> written in the form $n(2) = 2 + g(2)$.	
The p-adic 3-periodic points of $n(2) \equiv a_0 + 2 + 2^{-1}$, $v_p(a_0) \ge 1$	The case $p = 7$ and $q = 7$

IV. The case p = 7 and q = 7.

Let $g(z) = a_0 + z^7 \in \mathbb{Z}_7[z]$ be a distinguished polynomial and $h(z) = z + g(z) = a_0 + z + z^7 \in \mathbb{Z}_7[z]$. One has $\overline{\Phi}_{3,h}(z) = (3 + 3z^6 + z^{48})^7$. $\deg(\Phi_{3,h}(z)) = 7^3 - 7 = 336$ and $\Phi_{3,h}(z) = \prod_{i=1}^{336} (z - \beta_i) \in \mathbb{C}_7[z]$. We shall put $\Phi_{3,h}(z) = \prod_{i=1}^{8} \Phi_j(z)$.

Definitions and reminders	The case $p = 2$ and $q = 2$
The polynomials h written in the form $h(z) = z + g(z)$	The case $p = 3$ and $q = 3$
The p-adic 3-periodic points of $b(z) = z_0 + z + z_0^q$ $(z_0) \ge 1$	The case $p = 5$ and $q = 5$
The p-adic 3-periodic points of $n(2) = a_0 + 2 + 2^{-1}$, $v_p(a_0) \ge 1$	The case $p = 7$ and $q = 7$

For the polynomials $\Phi_j(z)$, $1 \le j \le 6$

Let us consider Ψ written in the form $\Psi(z) = \prod_{i=1}^{n} \Phi_i(z)$, one has

$$\overline{\Psi}(z) = \prod_{\ell=1}^{6} (z - \overline{\ell}) = \prod_{\eta \in \mathbb{F}_{7}^{*}} (z - \eta).$$

Let \mathcal{Z}_{ψ} be the set of roots of Ψ . Since $\overline{h}(z)$ permutes the roots of $\overline{\Psi}(z)$ if $\beta \in \mathcal{Z}_{\Psi}$, then the 3-cycle $(\beta, h(\beta), h^{\circ 2}(\beta))$ is in \mathcal{Z}_{ψ} .

Proposition

Let β be a root of Φ_j , $1 \leq j \leq 6$, then:

- Q₇[β] is equal to Q₇ or is a totally ramified extension of Q₇.
- The number of the 3-cycles is 14

$\begin{array}{c} \text{Definitions and reminders.}\\ \text{The polynomials h written in the form $h(z)=z+g(z)$}\\ \text{The p-adic 3-periodic points of $h(z)=a_0+z+z^q$, $v_p(a_0)\geq 1$} \end{array}$	The case $p = 2$ and $q = 2$ The case $p = 3$ and $q = 3$ The case $p = 5$ and $q = 5$ The case $p = 7$ and $q = 7$

For the Polynomial $\Phi_7(z)$

The polynomial Φ_7 is such that $\overline{\Phi}_7(z) = w_7(z)^7 = (z^6 - 3)^7 \in \mathbb{F}_7[z]$.

Proposition

Put $Z_7 = \{\beta \in \mathbb{C}_7/w_7(\overline{\beta}) = 0\}$, the set of roots of Φ_7 . Then if $\beta \in Z_7$, one has $h(\beta) \in Z_7$. Furthermore Z_7 is a partition of 14 subsets of 3-cycles.

D-finitions and anniadom	
The polynomials h written in the form $h(z) = z + g(z)$	
The p-adic 3-periodic points of $b(z) = z_0 + z + z_0^q$ $\kappa(z_0) \ge 1$	
The p-adic 3-periodic points of $n(2) = a_0 + 2 + 2^{-1}$, $v_p(a_0) \ge 1$	The case $p = 7$ and $q = 7$

For the Polynomial $\Phi_8(z)$

The polynomial Φ_8 is such that $\overline{\Phi}_8(z) = w_8(z)^7 = (z^{36} + 4z^{30} + 5z^{18} + 2z^{12} + 1)^7.$

Proposition

Let $Z_8 = \{\beta \in \mathbb{C}_7/w_8(\beta) = 0\}$, the set of roots of $\Phi_8(z)$. Let us consider Z_{ϕ} , the set of the 3-primitive periodic points, that is the set of roots of 3-dynatomic polynomial $\Phi_{3, h}$. Then $Z_8 = Z_{\phi} \setminus (Z_{\psi} \cup Z_7)$. Since Z_{ψ} and Z_7 are invariant by h then Z_8 is also invariant by h. Hence for any $\beta \in Z_8$ the 3-cycle $(\beta, h(\beta), h^2(\beta))$ is in Z_8 . Furthermore Z_8 is a partition of $84 = \frac{252}{3}$ subsets of 3-cycles.

Thanks

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

三 つへで